Example Program 12: MM_S12_Viz_ForLoop
Program Introduction
Description |
The robot triggers the Mech-Viz project to run, obtains the planned path, and then stores the planned path by looping for picking and placing. |
File path |
You can navigate to the installation directory of Mech-Vision and Mech-Viz and find the file by using the |
Project |
Mech-Vision and Mech-Viz projects |
Prerequisites |
|
This example program is provided for reference only. Before using the program, please modify the program according to the actual scenario. |
Program Description
This part describes the MM_S12_Viz_ForLoop example program.
The MM_S12_Viz_ForLoop example program is similar to the MM_S2_Viz_Basic example program, except that MM_S2_Viz_Basic stores waypoints one by one and MM_S12_Viz_ForLoop stores waypoints by looping (the code of this feature is bolded). As such, the features of the sub program that are similar to those of MM_S2_Viz_Basic are not described in this part. For more information about these features, see Example Program 2: MM_S2_Viz_Basic. |
DEF MM_S12_Viz_ForLoop ( )
;---------------------------------------------------
; FUNCTION: trigger Mech-Viz project and get
; planned path, get poses using for-loop structure
; Mech-Mind, 2023-12-25
;---------------------------------------------------
;set current tool no. to 1
BAS(#TOOL,1)
;set current base no. to 0
BAS(#BASE,0)
;move to robot home position
PTP HOME Vel=100 % DEFAULT
;initialize communication parameters (initialization is required only once)
MM_Init_Socket("XML_Kuka_MMIND",873,871,60)
;move to image-capturing position
LIN camera_capture Vel=1 m/s CPDAT1 Tool[1] Base[0]
;trigger Mech-Viz project
MM_Start_Viz(2,init_jps)
;get planned path, 1st argument (1) means getting pose in JPs
MM_Get_VizData(1,pos_num,vis_pos_num,status)
;check whether planned path has been got from Mech-Viz successfully
IF status<> 2100 THEN
;add error handling logic here according to different error codes
;e.g.: status=2038 means no point cloud in ROI
halt
ENDIF
;save waypoints of planned path to local variables using for-loop structure
FOR count=1 TO pos_num
MM_Get_Jps(count,pick_point[count],label[count],toolid[count])
ENDFOR
Xpick_point1=pick_point[1]
Xpick_point2=pick_point[2]
Xpick_point3=pick_point[3]
;follow the planned path to pick
;move to approach waypoint of picking
PTP pick_point1 Vel=50 % PDAT1 Tool[1] Base[0]
;move to picking waypoint
PTP pick_point2 Vel=10 % PDAT2 Tool[1] Base[0]
;add object grasping logic here, such as "$OUT[1]=TRUE"
halt
;move to departure waypoint of picking
PTP pick_point3 Vel=50 % PDAT3 Tool[1] Base[0]
;move to intermediate waypoint of placing
PTP drop_waypoint CONT Vel=100 % PDAT2 Tool[1] Base[0]
;move to approach waypoint of placing
LIN drop_app Vel=1 m/s CPDAT3 Tool[1] Base[0]
;move to placing waypoint
LIN drop Vel=0.3 m/s CPDAT4 Tool[1] Base[0]
;add object releasing logic here, such as "$OUT[1]=FALSE"
halt
;move to departure waypoint of placing
LIN drop_app Vel=1 m/s CPDAT3 Tool[1] Base[0]
;move back to robot home position
PTP HOME Vel=100 % DEFAULT
END
The workflow corresponding to the above example program code is shown in the figure below.

The table below describes the feature of storing the planed path in waypoints by looping. You can click the hyperlink to the command name to view its detailed description.
Feature | Code and description |
---|---|
Store the planned path by looping |
Assuming that the path planned in this example program contains three waypoints, the above code is equivalent to the following three commands in the MM_S2_Viz_Basic example program:
|